AN ANALYSIS OF LANEWAY HOUSING IN VANCOUVER
Introduction

Laneway housing policy has been a contentious issue in Vancouver for the last several years. In a city with an increasing need for more housing options, the idea of adding more houses in a low density area was met with both support and criticism. We decided to use the structured decision making model to analyze this policy. The question of whether laneway housing was successful in the City of Vancouver was considered in the context of this decision making model as it is useful for complex policy issues.

To best analyse whether a policy is successful, it is useful to compare it to an alternative or the status quo. We used structured decision making to compare Laneway Housing Policy to alternatives such as allowing for no development and building towers or townhouses. We also compared the policy to the objectives decided on by the City of Vancouver to see if they met these goals. Lastly, we argue that the policy missed several key objectives and used these to analyze the policy in the city as a whole.

This topic is an important case study for policy analysis as it combines a number of competing factors - political goals of the current city government, environmental and sustainable considerations and affordable housing needs. It also shows how policy may need to be revised over time as ideas are put into practice and unseen consequences arise. It is a good example of how policy development is a dynamic process.

Policy Context

History

Vancouver is well known for being the most expensive city in Canada (Canadian Centre for Policy Alternatives, 2008). Earlier this year it was rated the 2nd most unaffordable city in the world (CBC News, 2015). It is also a place with incredibly low vacancy rates and a narrow range of choice in housing types (CCPA, 2008). Sleek new condos dominate Vancouver’s downtown and single detached family homes are well established in its surrounding neighbourhoods. The City’s laneway housing policy is an attempt to answer the contentious question of how and where to accommodate our growing population and housing needs.

Laneway houses are not a new invention, rather a rebranding and repurposing of a pre-existing housing form that has existed in Vancouver since the turn of the twentieth century. Known as coach or carriage houses, they were often built by homeowners to live in while a larger primary residence was
being built. Homeowners would often go on to rent out the coach house for mortgage assistance once their main residence was finished or simply maintain it as a guesthouse (Gold, 2014). Early coach houses were limited to a few neighbourhoods and have long been restricted by zoning policy (Fisher, 2009).

The origin of Vancouver’s current laneway housing program can be traced back to June of 2006, just a few days prior to the City’s hosting of the World Urban Forum. Then Mayor, Sam Sullivan, unveiled a new city-wide planning initiative called EcoDensity. The initiative was marketed as a broad and comprehensive planning program designed to foster a “citywide dialogue on the relationship between urban form and sustainability” (“EcoDensity”, 2009). The city sought to “achieve sustainability, affordability, and livability” by means of increased density, particularly in existing neighbourhoods outside the downtown peninsula (“EcoDensity”, 2009). In spite of Vancouver’s famously dense downtown core, the City has one of the largest proportions of single family lots of any city in North America (Bula, 2009). Moreover, the “quasi-suburban feel” of many Vancouver neighbourhoods has been strongly defended by residents who have historically resisted any kind of infill development (Bula, 2009). With this in mind, the EcoDensity plan set out to develop “more character sensitive density types” that would maintain the look and feel of existing neighbourhoods (“EcoDensity”, 2009). One such density type proposed by the initiative was laneway housing.

Stakeholders

There are a number of stakeholders to consider in this project. The policy was developed by the City staff including Director of Planning, Manager of Engineering Services, General Manager of Social Development, Director of Development Services, Chief Building Official, and Director of Real Estate Services. Policies such as this are generally developed by City staff and brought to council for review and approval. There is no requirement in seeking approval from the Provincial or Federal government on these municipal level policy introductions. The general public was informed about the Laneway Housing Policy through public engagement sessions for citizens and neighborhoods during EcoDensity development plan in 2007-2008. These consultations were used as a framework to develop analysis and options, which were later presented to public in the Summer and Fall of 2008. Other interest groups such as the Greater Vancouver Homebuilders Association, UDI (Urban Development Institute), Heritage Commission sub-committee on EcoDensity and the Food Policy Council were also consulted.
Design History

Since laneway houses were first introduced into Vancouver’s housing policies, the design has been evolving. The aim of the laneway house project is to provide more housing in the urban core while maintaining the traditional neighborhood fabric of single detached homes. The morphology of the city’s old streetcar suburbs (in places like Kitsilano and West Point Grey) lends themselves well to this density project. Long residential blocks are located in proximity to commercial streets (like Broadway) that are serviced by public transportation. Because these blocks are cut through at mid point by laneways, there is opportunity to add more housing in these pedestrian friendly, human-scale neighborhoods. While historically, these laneways were provided to hide utilities such as garages, waste, and later parking, the laneway house program changes the character of these secondary streets. Laneway houses effectively make the laneway a more visible and utilized pathway within neighborhoods. On top of that, they are located in the backyards of existing citizens; this is why achieving successful design of these new residences is so central to policy mandates.

Notable amendments which have affected the design of laneway houses happened in 2009, with a change of government (which rebranded the policy as the Sustainable Laneway House Project), and again in 2013. These amendments came about in response to citizen feedback and overall analysis of the house’s performance. The following is a list of elements that impact design that the city has specific policies for in hopes of achieving a well-integrated new housing stock:

(a) Quality, Durability and Expression
(b) Livability
(c) Scale and Massing
(d) Privacy and Overlook
(e) Lane Frontage
(f) Landscape

Some issues that arose with the initial design of laneway houses had to do with scale and massing which affected livability for inhabitants, privacy for neighbors and integration into existing fabric. While there is some flexibility in the size a laneway house can be, the average floor space is 51 square meters. These small homes are meant to be studios or one-bedroom (in rare cases two-bedroom) residences. Because of strict policy around massing, the initial laneway houses were not well laid out in plan; rooms were often too small to be functional and affected livability for inhabitants.
Privacy has also been an issue – again through policy, laneway houses have been designed to a mandated one and a half stories. The upper half story has been the topic of much debate as elements such as roof pitch and window placement affects privacy between residents of the laneway house and residents with whom they share their lot. Another concern has to do with building height; in some cases neighbors have been concerned that the upper half story is too high and does not fit within the overall scale of the existing neighborhood.

Many of these issues are being addressed through the policy amendments (to be discussed further in this analysis). Rules around massing and floor area are more flexible, allowing for more creative, site-specific design responses. There is a greater stress on housing form (setbacks, facade, glazing) that improves privacy by orienting the laneway house towards the street. Most recent policy amendments make it easier to build a one-story laneway house – a change that could help solve issues around height. The important takeaway is that the success of the laneway housing project is very much tied to design, and that design is in many ways guided by government policy.

Current History

The City of Vancouver’s 2006 EcoDensity initiative changed this historical use of laneway houses and highlighted them as a good means to achieve increased density within the City. Although laneway houses were constructed under this initiative, formal regulation did not yet exist. On July 28th, 2009 the formal Laneway Housing Guidelines were adopted by City of Vancouver for properties in the Rs-1 and Rs-5 single family districts (94% of the city’s single family lots are located in this districts). Following the adoption of the guidelines, the first 100 laneway houses were built and monitored by staff for a 2010 report on the success of the initial implementation. Several key issues and concerns were identified in the report, and Council directed staff to provide an amendment proposal to address the issues. In 2013, the City of Vancouver staff presented the laneway housing proposal and Council approved the 2013 amendments to regulations and guidelines for the laneway housing program.

Part II- Analysis

Objectives

Although the City of Vancouver has demonstrated its satisfaction with the laneway housing program to date, our team wanted to evaluate whether or not laneway houses were the best alternative to meet
the demands of the City. In order to evaluate the success of laneway houses in Vancouver, we reviewed the City of Vancouver’s original objectives and sub-objectives as well as the goals in the 2013 amendments to see whether the laneway housing plan has achieved what it set out to. Many of these goals outline different ways to address a higher level objective. We separated these means and ends and used the basis to come up with a set of objectives as defined by structured decision making. We then sorted the COV objectives into social, economic and environmental categories. According to Gregory et. al (2012), the objectives define ‘what matters’ in the decision. They represent the end goal of the project. Table 1.1 shows this comparison of the means and ends. The ends are our resulting objectives which we used to compare our alternatives.

Table 1.1
Measures

For each objective, we came up with distinct measures in order to compare a range of alternatives. As a number of our objectives are qualitative, we decided a defined range would be the best way to measure aspects such as neighbourliness, neighbourhood character and ecological integrity. We used a code of good (green), red (bad) and yellow (average) to show this.

For objective 1 - increasing density - we looked a number of factors. We decided the best way to analyze whether laneway housing was successful in this regard would be to compare each of our alternatives to a hypothetical case of how many buildings of each type could be built in a city block with a radius of 400 meters (or 5 minute walk) from a transit hub. This is based on research done by James Beaudreau (2014) for the School of Community and Regional Planning at UBC. His hypothesis was “(based on) the hypothetical block... a redevelopment of the block from a typical single-family block to a block in which half the parcels have been converted to row houses would produce an increase in dwellings from 24 dwellings to 80 dwellings and an increase in density from 10 to 33 DU/AC. A block that was completely redeveloped using row houses would increase the number of dwellings to 100 and produce a density of 42 DU/AC, and a block that is redeveloped using both row houses and laneways would increase the number of dwellings to 120 and produce a density of 50 DU/AC” (Beaudreau, 2014, pg. 48). We used this ratio, to create a scale from red being low density and green being very high density to compare the building types of our alternatives. As a reference, we also used Figure 1.1 to compare different building types across the City and to support Beaudreau’s analysis.

For objectives 2 to 4, we used a scale that compared how well the objective was met based on our definition for each. For maintaining single family neighbourhood character, we defined this as the number of individual yards, the number of individual parking spaces, the maintenance of views (low height of buildings), and access to front entrances (individual units) provided by each building type. For reducing adverse ecological impacts, we based our scale on the assumption that increased density is better for the environment as outlined by the EcoDensity plan (“EcoDensity”, 2009). While the plan did outline that all laneway houses should be built with green building materials, we decided the it was hard to measure this for other building types without clear policies for green building. We also measured the walkability and access transit hubs that each development type would provide. We understood that
these would be hard to measure so they are based on our own assumptions as compared to each alternative.

![DISTRIBUTION OF DENSITY THROUGHOUT VANCOUVER PER BLOCK](image)

Fig. 1.1: Centre for Canadian Policy Alternatives, 2008.

For objective 4 - increase satisfaction with laneway housing - we decided to break this up between neighbours and tenants, as the amendments created by the City helped to enhance certain aspects of each. Both were measured by popularity, privacy, pressure on amenities, street parking, views remaining uncompromised and their ability for keeping families together. Our list of measures compared to the objectives is listed in Table 1.2.

Policy Evaluation 1 - Alternatives, Consequences and Tradeoffs

To evaluate the success of laneway housing in Vancouver, we created a range of alternatives to compare with the current policy. We used these to show the success of the project based on our objectives. We used two extreme book end alternatives to frame the decision and allow for creative alternatives
(Gregory et al., 2012). Alternative 1, no change and alternative 5, high-rise buildings are these book ends. We then compared the laneway housing and the laneway housing with amendments to medium density buildings to see what alternatives the City of Vancouver could have used.

The consequences and tradeoffs of each of these alternatives are outlined individually below. Rather than looking at the consequences of just the laneway housing policy itself, we thought it was useful to look at the consequences and tradeoffs of each alternative in order to have a well rounded analysis of what could have been built instead. Table 1.2 shows our objectives by alternatives table which outlines how each alternative measures based on our objectives. It can be used as a snapshot to review the laneway housing policy.

Table 1.2 - Objectives by alternatives table

<table>
<thead>
<tr>
<th>Objective</th>
<th>Measure</th>
<th>1 - No change</th>
<th>2 - Laneway housing</th>
<th>3 - Laneways housing with amendments</th>
<th>4 - Low rise to mid rise</th>
<th>5 - High rise</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - Increase density (in single family neighbourhoods)</td>
<td>Good (green - high density) to Bad (red - low density)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 - Maintain single family neighbourhood character**</td>
<td>Good (green) to Bad (red)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 - Reduce adverse ecological consequences ***</td>
<td>Good (green) to Bad (red)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4a - Increase residents satisfaction with neighbourhood based on chosen housing type (neighbours) ****</td>
<td>Good (green) to Bad (red)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4b - Increase residents satisfaction with neighbourhood based on chosen housing type (tenant/homeowner) ***</td>
<td>Good (green) to Bad (red)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** Objective 2 defined by # individual yards, # individual parking spaces, maintain views (low height of buildings), access to front entrances (individual units)

*** Objective 3 defined by building footprint: # of person per hectare (ecodensity/ smart growth) and high walkability, high access transit hubs

**** Objective 4 a & b defined by popularity, privacy, pressure on amenities, street parking, views uncompromised, keeping families together
Alternative 1 - No Change

The ‘No Change’ Alternative is a hypothetical ‘bookend,’ which reveals the extreme impacts of current trends should they be left to continue uninhibited. We use this as a base case to compare the success of the actual policy to what would have happened to the neighbourhoods without laneway housing.

For objective 1 - increase density - we argue that this policy would have been a very bad (red) option. The City of Vancouver (COV) has targeted the development of laneway housing in low-density single family neighbourhoods, with approximately 10 DU/AC (Beaudreau, 2014). These neighbourhoods compose 94% of all the city’s single family lots and include older neighbourhoods such as Mt Pleasant or Grandview-Woodland (COV, 2013). Currently, there exists a sentiment of resistance to densification in these neighbourhoods led and nurtured by local resident associations (City Hall Watch, 2014). Due to the existing protection of these pre-existing neighbourhood structures, there remains little opportunity to increase density without any policy intervention and extensive public consultation processes.

For neighbourhood character and keeping existing residents happy, the no change option would be a good option. The character of the neighbourhoods targeted for laneway development contain high numbers of individual yards, parking spaces, below five storey building heights, and front and back entrances to individual units from the street (City of Vancouver, Policy Report -Urban Structure, 2008). In this way, if there were no policy intervention and current trends continued, the landscape would remain consistent with its traditional character. Additionally residents’ associations have been vocal about protecting and maintaining their neighbourhoods’ current density rates and character (City Hall Watch, 2014). Many individuals actively engaged in the planning process in Vancouver have noted that neighbourhood resistance may be the leading cause of preventing increased density in existing low density areas (Rosol, 2013). The arguments against development rests in fears that it will “destroy relationships” and is embedded within a larger distrust for “top down” planning projects by residents in the past (City Hall Watch, 2014). In this way, if there were no change in housing type, neighbours satisfaction would remain high.

For objective 3 - maintaining ecological integrity - we argue that the no change option would be very bad. Through research developed for the “EcoDensity” and “Smart Growth” plans, the City’s greenhouse gas (GHG) emissions in Vancouver are directly linked to housing densities in our neighbourhoods (See figure 1.2 below). Low density neighbourhoods increase our carbon footprints by having a low people-per-unit ratio, decreased walkability as well as increased dependence on
automobiles and distance to transit hubs (COV, 2009). In this way, the region’s development is pressured to sprawl into suburban areas and agricultural land. If the current low density neighbourhoods that surround the City’s downtown core remain stagnant, the ecological impacts of our carbon contributions and regional sprawl will continue to grow (City of Vancouver, 2009).

Lastly, before laneway implementation, tenants had limited housing types to rent, which included basement suites, rented rooms or if found, a shared rented single detached house with roommates (CMHC, Livable Lanes, 2009). With no change to the limited choice in housing type tenant satisfaction would remain low. As it stands, there remains limited capacity for homeowners to develop their properties without a long and expensive zoning applications for any additions or redevelopments (COV, 2008, Policy Report – Urban Structure). Tenant satisfaction has been measured as average, as the status quo both limits their capacity to develop however, it also protects their privacy, street parking, views and reduces the potential of escalating pressures on shared amenities.

Alternative 2 - With Laneway Housing

The actual laneway housing policy was reviewed under our measurements. It increased density by adding an additional structure that can hold an additional 1-4 people (comfortably) on existing property in low density neighbourhoods and increase density to 15 DU/AC (Beaudreau, 2014). A review of the
City of Vancouver’s laneways revealed that 40% of laneway houses offered 2 bedrooms (as opposed to 1 bedroom or a studio design) (City of Vancouver, 2013). For this reason, we argue it was an average option for increasing density.

For objective 2 - maintaining single family character - laneway housing kept single family neighbourhood character intact by adding structures to existing property. The first 39 of 100 laneway houses in the City of Vancouver were added to sites while retaining the existing main house. There was no increase in single family home demolition or replacement during this time. Most of the laneway houses were built with architectural styles that mimicked residential character and a sense of permanence. As a result, we argue that it was a good option for this measure.

Additionally, laneway housing meet residents’ satisfaction by maintaining community values and neighbourhoods characteristics. Furthermore, laneways are attractive and viable to homeowners; in comparison to single family house development, laneways are more feasible to build, and offer revenue and value to homeowners. However, certain privacy issues and parking congestion issues can arise (this was the case following the City of Vancouver’s 2010 laneway policy implementation and will be discussed further in this analysis). As a result, resident and neighbour satisfaction is average.

In terms of objective 3 - reducing adverse ecological consequences - laneway houses under the City of Vancouver must meet the energy efficiency requirements of the Green Homes program (as required for all new single family homes). Laneway houses must also meet existing site permeability requirements for single family lots, while retaining open space in the backyard (City of Vancouver, 2013). However, because laneway houses are added to existing single-family neighbourhoods, which are generally not as transit-friendly as new apartment developments on transit/service paths, laneway houses do not necessarily increase walkability and decrease a reliance on vehicle use. As a result, they are also average on our scale for this measure.

Alternative 3 - With Laneway Housing Amendments

The 2013 amendments to the laneway housing program brought about significant changes that we believe allowed laneway housing to further meet the objectives. These changes will be discussed in more detail in the “Implementation and Monitoring” section of this analysis, but will be summarized here. In terms of increasing density, the application and approval process for laneway housing became faster, and the approval of permits increased. Residents’ satisfaction increased with other changes, including building more 1 storey and less 1.5 storey houses for privacy purposes. Furthermore, the City
required one external, uncovered parking stall preventing laneway owners from using a covered parking
garage for other purposes. Therefore, we have changed the residents’ satisfaction measures to green
with these amendments

Alternative 4 - Medium Density Development (Low-Rise: Rowhouses, Stacked Townhouses)

We used rowhouses and stacked townhouses as our midpoint comparison, since the City identifies them
as the bridging gap between single-family homes and condominiums. This alternative was used as a
slightly higher density option. Low-rise buildings provide a far greater potential for density than laneway
housing but not as much as high-rise towers. Depending on what form this development takes, this
alternative can provide 30-75 DU/AC (Beaudreau, 2014), rowhouses being on the lower end with
stacked townhouses being on the upper end of the range.

As outlined earlier, the addition of low rise development does not maintain single family
character as well as the ‘hidden’ density of laneway houses, but they are not as bad as high-rise towers
would be. This is dependent on building location, which might be along major boundary roads, rather
than in the center of the neighbourhood. Moreover, they are often designed to match the aesthetic of
the neighborhood where they are being built. Regarding our measures, low-rise (rowhouses, stacked
townhouses) typically provide private green space for every unit, parking, and they have entrances at
grade facing either the street or a courtyard.

This alternative is a good option for reducing adverse ecological consequences. Using our
measure of density as an indicator for ecological integrity, we consider low-rise development to be
good, or ‘green’ on our scale as compared to the lower density provided by laneway houses alone, as it
allows for more people per square foot.

In terms of resident satisfaction, the City of Vancouver’s recent rezoning and redevelopment
projects illustrate that rowhouses and stacked townhouses offer more privacy to their residents (City of
Vancouver, 2013). Rowhouses are side-by-side units that share a wall and have their own front and
backyards. Stacked townhouses are two-level units stacked on top of each other, each with its own front
door and private outdoor space. Both of these options provide individual front entrances facing the
street or courtyard, private outdoor space provided either through front or rear yard patios/courtyards
and/or rooftop decks. In addition, their building design include both ‘through units’ with windows and
entrances at both ends or back-to-back units with windows at one end.
These low-rise alternatives also offer a good range of parking options. Stacked townhouses provide 0.65 parking spaces per unit (open carports or below ground), rowhouses offer 1 parking space per unit (individual garages or open parking spaces at the lane), and duplexes with secondary suites can have up to 3 parking spaces. Some of neighbours’ views might slightly be compromised with this alternative as height of small single detached homes in the same area ranged from 7-10 m, whereas rowhouses and townhouses can be as high as 10.7 m and 11.5 m retrospectively (City of Vancouver, 2013). Lastly, although these low-rise buildings do not offer the same amount of flexibility for families to live together, they could offer more affordable options for family members to live in the same neighbourhood. Therefore, tenants living in this building type would likely find it to be a good option, based on our measures, while prior neighbourhood residents would find it average.

Alternative 5 - High Density Development (High-rise towers)

We used alternative 5 as an extreme example and as a our other bookend alternative for this project. High-rise towers were used hypothetically to show the high-density alternative to laneway housing. Compared to the base case of no change, this alternative is completely opposite. It would greatly increase density by creating 75-125 DU/AC (Beaudreau, 2014). If the City were to allow even more towers, it would increase density even more. Therefore, it would be a good option if we are only focusing on density. Also, towers would also be a good option for reducing adverse ecological effects based on our measure. Walkability would increase as less people would have cars based on the assumption that high density reduces vehicle miles travelled. Also, it would fit into the City’s EcoDensity plan.

However, the issue with this alternative is that it does not maintain single family neighbourhood at all. There would be no individual yards, parking spaces, or private entrances and the views of the neighbourhood would be compromised. Additionally, neighbours would not like this form of dwelling as it greatly reduces privacy, increases pressure on amenities, reduces street parking and does not allow for families to live on the same property. Residents may be somewhat happy with the towers but the wider neighbourhood would not.

Policy Evaluation 2 - Monitoring and Implementation

The laneway housing program in the City brought a large number of newly built units. From the initial implementation of the laneway housing program in 2009 (up until the 2013) more than 800 permits
were issued and 500 houses were built in the City of Vancouver (City of Vancouver, 2013). Following 2013 amendments to the program, there was an increase in permits for laneways, as seen in 2014: “a total of 357 laneway home permits in 2014, compared to 345 in 2013 and 350 in 2012” (Huffington Post, 2015). Therefore, since 2013 and the laneway housing amendments, an additional 600 permits have been approved and 400 laneway housing units have been built (CMHC, 2015).

Following the City of Vancouver’s monitoring reports in 2010 of the initial implementation process, the City came across a few concerns with laneway housing that were ultimately met with the 2013 laneway housing policy amendments. Firstly, there was an issue of privacy in neighbourhoods from 1.5 storey laneway housing onlookers. This concern was met with encouragement to build more 1 storey units. To facilitate this change, the City limited the height of one story units to the maximum allowed for a garage - typically 12-15 feet, and also increased site coverage allowance by a maximum of 45%. Secondly, many covered parking units of laneway houses were being used for purposes other than parking, such as additional living space. In order to reduce the parking issues in neighbourhoods, the City required new laneway houses to provide one external parking space for both 1 and 1.5 storey units. Concerns over the livability of these houses included the amount of floor space in the dwellings, as well as the lack of storage space. To improve the livability and storage area, and to continue to prevent the building of 1.5 storey laneway houses, the city allowed for 0.16 times more lot area- to a maximum of 900 square feet- and allowed an additional 40 square feet for storage space (closet space or a separate storage room). Finally, to make the process of approving laneway housing permits, amendments allowed for developers to bypass the pre-application meeting and submit an application (for 1 storey buildings) without having it reviewed first. The guidelines were altered to clarify the new requirements (City of Vancouver, 2013).

Before City Council approved the amendments for laneway housing, it should be noted that staff underwent a few consultation sessions with professionals, industry and the public to ensure that the concerns were being met with both realistic and comprehensive changes. The consultation process prior included two workshops with builders and designers in late 2012 and early 2013, and two public information sessions in March 2013. The two builders workshops allowed staff to receive feedback on the proposal, particularly in the feasibility and the support for the changes in laneway house designs. The public information sessions were thoroughly advertised for multiple weeks, and brought in over 250 residents and industry representatives and 73 filled comment forms (City of Vancouver, 2013). Overall, the public supported the proposed amendments. After receiving the approval from public, and finally
from Council, the laneway housing guidelines were adopted. Current monitoring on the success of laneway housing following the 2013 amendments is in progress.

Conclusion

Through the use of structured decision making tools, we have outlined the laneway housing policy in comparison to other choices in building type that the City of Vancouver could have made. When we look at our alternatives table, based on our objectives, laneway housing is an average choice. Medium density is also an average choice and could have been considered by the City on its own or in conjunction with a combination of housing types. What is clear however, is that while the City had an overarching goal of increasing density, they put a weight on protecting single family neighbourhoods. If they had wanted to increase density alone, they could have put up large towers or increased mixed-use zoning in the area. This shows how policy is a political process. Strong resident voices in the neighbourhood led to an outcry against increased density in their area and pushed the policy in a certain direction. As a result, laneway housing became a good alternative if we weight neighbourhood satisfaction high on our list of objectives.

One of our team’s largest criticisms of the City of Vancouver’s laneway housing policy has been the lack of “affordability” as a firm objective. Affordability has been briefly mentioned in certain laneway housing documents, but it is certainly not a defining objective, nor does the City state realistic means of increasing affordability through laneway housing. Many critics have argued that the policy’s sustainability goals cannot be achieved without the incorporation of affordability into its framework (CCPA, City Hall Watch). As the policy has unfolded, laneway houses have often become too expensive for their intended users (often students and children or the elders of the household) (CMHC, Livable Lanes, 2009). Without adequate policy interventions, both low and high density neighbourhoods in Vancouver will continue to be unaffordable to buy, with limited rental choices for the vast majority of those who live and work in the city (CCPA, 2008). Low to middle income earners are moving outside of Vancouver to find affordable housing, which increase their commute times and GHG emissions. Furthermore, households with higher incomes have much larger ecological footprints than other income groups, with the perverse possibility that people who bike or take public transit to work are displaced by others who are more likely to drive. Although laneway housing development has proven successful
within the narrow scope of the City’s objectives, alone it is not the solution to Vancouver’s larger sustainability and equity objectives.

The use of structured decision making was important in this analysis. By considering laneway housing in the context of a comparison to alternatives, we were able to show the viable options which could have contributed to a greater satisfaction from neighbours and the City of Vancouver as a whole. While an analysis of current policy is not often the main purpose of SDM, we found it useful in this case for understanding the greater objectives of the City and for outlining our decision making in regards to the alternatives. This policy analysis also shows the importance of a review of policy as it unfolds, so that learning can occur and the policy can be made better. The amendments to the laneway housing policy in Vancouver allowed for it to be a more feasible option. Lastly, this policy analysis represents the political nature of both city redevelopment and public perception of planning policy. The residents were large drivers of the policy and the City of Vancouver listened to them. This shows the importance of communication between the City and those who will be impacted by development, and of a good process that presents the alternatives in an easy to understand form. If the City of Vancouver had used structured decision making in the beginning, they could have had a better result.
References

